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Disclaimer 

The text, figures and tables in this deliverable can be reused under a provision of the Creative Commons 

Attribution 4.0 International License (CC BY 4.0). Logos and other trademarks are not covered by this 

license. 

The content of the publication herein is the sole responsibility of the publishers and it does not 

necessarily represent the views expressed by the European Commission or its services. 

While the information contained in the documents is believed to be accurate, the authors(s) or any 

other participant in the ENVISION consortium make no warranty of any kind with regard to this material 

including, but not limited to the implied warranties of merchantability and fitness for a particular 

purpose. Neither the ENVISION Consortium nor any of its members, their officers, employees or agents 

shall be responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or 

omission herein. 

Without derogating from the generality of the foregoing neither the ENVISION Consortium nor any of 

its members, their officers, employees or agents shall be liable for any direct or indirect or consequential 

loss or damage caused by or arising from any information advice or inaccuracy or omission herein. 

 

  

https://creativecommons.org/licenses/by/4.0/
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Project Abstract 

Within only six months, over 7.4 million people have been diagnosed with SARS-CoV-2. In the most 

severely hit countries, more than 10% of infected patients have received treatment in Intensive Care 

Units (ICUs). Insufficient data and limited knowledge on the disease as well as the lack of tools to support 

the intensivist in making accurate, timely and informed decisions has led to high mortality rates.  

 

Continuous surveillance, the collection and intelligent analysis of data from many sources, including 

ventilators and electrical impedance tomography, would allow intensivists to decide on the best suitable 

treatment to accelerate the recovery of the often comorbid COVID-19 patients, while reducing the 

burden on clinical staff and healthcare costs. This information would also increase our understanding of 

the yet unknown course of disease, supporting other stakeholders in the quest for new therapies. 

 

In ENVISION, our multidisciplinary public-private consortium will advance an innovative digital tool, 

Sandman.MD, a real-time and plug-and-play monitoring app, to an intelligent decision-support system 

for monitoring, prediction and treatment of COVID-19 patients in ICUs – the Sandman.ICU – reaching 

Technology Readiness Level 9 and ready for CE marking by the end of the project. The app has been 

developed by our SME partner app@work and successfully introduced by several hospitals in Germany 

for use during the perioperative period. Sandman.ICU will be integrated into an AI-driven data analytics 

suite with predictive modelling tools and enhanced with a smart alert functionality. The digital tool will 

be validated and demonstrated in 13 hospitals across Europe. Our Health Technology Assessment 

expert partner will demonstrate the economic and societal value of Sandman.ICU, while an experienced 

SME will manage the innovation process in view of an immediate market uptake. The rollout will be 

supported by the European Society of Anaesthesiology and Intensive Care (ESAIC). 
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Executive Summary 
The ENVISION project aims to improve the treatment of COVID-19 patients in intensive care units (ICUs) 

by using an innovative digital tool, the Sandman ICU. The Sandman ICU is a real-time and plug-and-play 

monitoring app and will be advanced to an intelligent decision support system for the monitoring, 

prediction and treatment of COVID-19 patients in ICUs. During the ENVISION project, the Sandman ICU 

will collect data from several European countries. Basing on these data, a team of AI experts within the 

project consortium will develop several intelligent data analysis tools, which will be implemented in the 

Sandman ICU towards the end of the ENVISION project. 

Various envisioned applications (i.e. use cases) demonstrating the different possibilities of integrating 

AI into healthcare settings have been defined/identified by AI experts at the beginning of 

the ENVISION project. The strategies in the Health Technology Assessment Plan are based on these use 

cases. Three categories of use cases were identified: 

1. An AI-based system that provides recommendations on treatment based on earlier 

observations and/or current clinical guidelines 

2. An AI-based system that predicts sepsis  

a. At the onset of sepsis 

b. Before the onset of sepsis 

3. An AI-based system that recommends the inclusion of a patient in a specific clinical trial 

 

The goal of this Health Technology Assessment Plan is to provide a strategy and define methods to 

estimate health gains and (saved) costs related to the implementation of the Sandman ICU. In this 

assessment plan, an elaborate overview of the current literature on COVID-19 and ICU patients is 

presented. The current literature on COVID-19 is essential for the health technology assessment (HTA), 

as it describes the population to whom the treatment is targeted and describes statistics on various 

COVID-19 clinical outcomes, such as complications, mortality and post-ICU quality of life. We argue that 

the ENVISION AI-based tools can significantly improve the clinical outcomes of COVID-19 patients in 

ICUs. In addition to this, ENVISION is expected to reduce the treatment costs of COVID-19 patients in 

ICUs.  

Several approaches are proposed to estimate the health gains and (saved) costs related to the 

implementation of the Sandman ICU. To show the effectiveness of the different use cases, we will use 

various outcome variables, i.e. survival, life years gained, length of stay, duration of mechanical 

ventilation and quality-adjusted life years (QALYs). The approaches for estimating the health benefits in 

use cases category 1 and 2b are relatively similar. In the first step, we indicate whether a treatment was 

done according to the recommendations or if a patient developed sepsis. Then, two proposed methods 

are presented to simulate the effect of early adequate treatment. The first uses matching, whereas for 

the second method, we will train a predictive machine learning model to predict the possible health 

gains of early adequate treatment.  

A different strategy is proposed for use cases category 2a and 3. To estimate the health gains of 

predicting sepsis at onset, we will compare the sensitivity of the Sandman ICU with that of risk 

stratification scores and/or triage systems that are currently used in ICUs throughout Europe, whilst 

keeping the specificity constant. Then, for the increase in true positives, the gains in terms of survival, 

life years gained and QALYs are estimated. The possible benefits of an AI system that recommends 

clinical trials will be time savings for staff, the value of information and the faster filling up of clinical 

trials.  
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With the above methods, reductions in mortality rate, length of stay and duration of mechanical 

ventilation can be inferred. The number of life years gained can be estimated using reductions in the 

mortality rate. Moreover, QALYs will be estimated using the reductions in mortality rate, length of stay 

and duration of mechanical ventilation, and utility values of patients post ICU. The reductions in length 

of stay can be translated into reductions in the costs of ICU treatment. The costs of implementing the 

AI system will be analysed. The incremental cost-effectiveness ratio (ICER) will be calculated to evaluate 

the cost effectiveness of the AI system.  

Towards the end of the Health Technology Assessment Plan, a timeline is introduced. This timeline is 

provisional and subject to changes, as it is highly dependent on the data collection and the work of 

partners in the project. Moreover, the HTA is highly dependent on the use cases implemented by the AI 

experts. Depending on the form of the data, not all use cases may be implemented, use cases may be 

adjusted or new use cases may come about. Similarly, the (amount of) data may not be suitable for the 

proposed HTAs. In addition, new information about COVID-19 in the form of literature is published daily. 

This information may influence the logic or feasibility of the plans proposed here. Therefore, the final 

results may differ from the methods described in this assessment plan.  
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The Health Technology Assessment Plan 
ENVISION is an Innovation Action funded by Horizon2020 with the aim of improving the treatment of 

Coronavirus Disease 2019 (COVID-19) patients in intensive care units (ICUs). In several European 

countries, COVID-19 patients hospitalised in ICUs will be monitored with the Sandman ICU. The 

Sandman ICU collects data in ICUs from a variety of sources, such as ventilators and electrical impedance 

tomography. These data will be processed in real time using artificial intelligence (AI) to aid the clinical 

decisions of intensivists and ICU clinical staff. For example, the Sandman ICU could recommend the best 

suitable treatment for a patient, thereby improving survival chances and later quality of life.  

The Sandman ICU will be implemented in 13 hospitals across Europe. The hospitals participating in 

the data collection are located in Germany, Hungary, Italy, Lithuania, Portugal, Romania, Slovenia, Spain 

and the UK. Data are collected from patients with COVID-19 in ICUs. All patients must consent orally to 

sharing their data with the ENVSION project. Currently, the project is still in the start-up stage, and data 

have yet to be collected. Basing on these data, a team of AI experts will develop several intelligent data 

analysis tools, which will be implemented in the Sandman ICU towards the end of the ENVISION project. 

The goal of this assessment plan is to provide a strategy that will estimate the health gains and (saved) 

costs related to the implementation of the Sandman ICU.  

1 Context  
In December 2019, a cluster of novel coronavirus-infected pneumonia was reported in the city of 

Wuhan. The disease, later referred to as COVID-19, quickly spread over the rest of the world, causing a 

global pandemic. Currently, millions of people have been infected with COVID-19, and nearly three 

million people have died (1). Whilst most patients experience mild or moderate symptoms, around 14% 

of COVID-19 patients develop severe symptoms, and 5% end up having a critical disease with 

complications (2). Daily, thousands of COVID-19 patients are admitted to ICUs around the world, causing 

healthcare systems worldwide to be overflooded and resulting in major disruptions in healthcare 

delivery (3).  

In the next sections, we present an elaborate overview of the current literature on COVID-19 and 

ICU patients. Nevertheless, this is not an exhaustive overview. The current literature on COVID-19 is 

essential for the health technology assessment (HTA), as it describes the population to whom the 

treatment is targeted and describes statistics on various COVID-19 clinical outcomes, such as 

complications, mortality and post-ICU quality of life. We argue that the ENVISION AI-based tools can 

significantly improve the clinical outcomes of COVID-19 patients in ICUs. In addition to helping improve 

the outcomes of COVID-19 patients, ENVISION is expected to reduce the treatment costs of COVID-19 

patients in ICUs. This overview will be followed by our strategies to estimate the health gains and (saved) 

costs related to the implementation of the Sandman ICU. We also included a timeline for 

implementation. The Health Technology Assessment Plan will be concluded with some additional 

information regarding the HTA of the Sandman ICU.  
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1.1 Demographics and outcomes of COVID-19 patients in ICUs 

1.1.1 Characteristics of critically ill patients 

The median age of patients admitted to the ICU is approximately 60 years (4–8). Some studies report 

that the median age of the ICU population decreased slightly during the COVID-19 pandemic (6). Around 

59%–80% of ICU patients are male (5,6,8–10), and almost half of all patients have hypertension (7,10). 

Other frequently reported comorbidities are cardiovascular disease (7,10), hypercholesterolemia (7,10), 

diabetes mellitus (7,10) and malignancy (7). These comorbidities have an increased risk of fatal 

outcomes.  

The length of stay of COVID-19 patients in the ICU is heterogeneous amongst different studies (11). 

Several researchers have conducted a meta-analysis and reported the length of stay. Rees et al. (12) 

examined 52 studies in and outside China. They reported a median length of stay of 8 (interquartile 

range (IQR): 5–13) days for patients in China and 7 (IQR: 4–11) days for those outside China. Chang et 

al. (11) evaluated several studies in the US and Europe and found a pooled mean duration of 7.78 (7.05–

8.51) days. Serafim et al. (13) examined the mean length of ICU stay for five studies around the world 

and found a mean length of stay of 9.0 (95% Confidence Interval (CI) 6.5–11.2) days. Patients with a 

fatal outcome generally had a shorter length of stay than patients who survived (12). There was no 

significant difference in the length of stay over time (12). 

 

1.1.2 Complications of COVID-19 in ICUs  

The responses of the immune system to COVID-19 differ quantitatively and qualitatively amongst 

patients (14). COVID-19 ICU patients often contract severe complications. The common ones include 

sepsis, acute respiratory distress syndrome (ARDS), acute kidney injury (AKI), venous 

thromboembolisms (VTE) and cardiovascular complications.  

Hyperinflammation and coagulopathy increase the severity in COVID-19 (15). Severe COVID-19 is 

closely related to sepsis, and most COVID-19 deaths in the ICU are caused by viral sepsis (15). Some 

researchers argue that sepsis caused by Severe Acute Respiratory Syndrome Coronavirus-2 explains the 

majority of severe COVID-19 cases (16). In a small Chinese study, Zhou et al. (17) found sepsis to be the 

most frequent complication in hospitalised COVID-19 patients. The median onset of sepsis in this study 

was 9 days, and none of the COVID-19 patients with sepsis survived. Sepsis is a severe complication with 

a high mortality rate; the mortality rates for sepsis have been estimated to be 30%–50 % (18). More 

than 50% of patients who experience septic shock have a fatal outcome (18). Despite the severity of this 

complication, sepsis is often an undetected complication (19).  

More than 80% of COVID-19 patients develop ARDS (11). However, the prevalence of ARDS differs 

greatly between studies, and ARDS often remains undetected (20). Patients with a higher age are at an 

increased risk of developing ARDS (21). Moreover, ARDS is associated with an increased risk of a fatal 

outcome (11). Some researchers suggest that COVID-19-induced ARDS has worse outcomes than ARDS 

from other causes (22). 

Problems with the kidney ranging from the presence of proteinuria and haematuria to AKI are fairly 

common amongst COVID-19 patients in ICUs (23). Almost 90% of mechanically ventilated COVID-19 

patients developed AKI (24). Moreover, almost a quarter of mechanically ventilated COVID-19 patients 

require renal replacement therapy (24). The risk factors for AKI include increased age, diabetes mellitus, 

cardiovascular diseases and hypertension (24). These factors are exactly the risk factors for COVID-19 

ICU mortality (see Section 1.1.3). Researchers are not sure how similar COVID-19-induced AKI is to 

sepsis-induced AKI, and there is still much uncertainty regarding how COVID-19-induced AKI can be 

managed (25).  
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The prevalence of VTE differs greatly amongst different studies (26). VTE consists of pulmonary 

embolism (PE) and deep vein thrombosis (DVT) (26). In a systematic review, Nopp et al. (26) found that 

both hospitalised and non-hospitalised COVID-19 patients are at risk of developing VTE. More 

specifically, they estimated a prevalence of 22.7% (95% CI, 18.1–27.6), 18.7% (95% CI, 12.6–25.6) and 

13.7% (95% CI, 10.0–17.9) for VTE, DVT and PE in ICU patients, respectively.  

Next to pulmonary problems, systematic inflammatory responses, kidney problems and 

thrombosis, cardiac complications may also occur (27). Myocardial injury, myocarditis, acute myocardial 

infarction, heart failure and arrhythmias are all likely to be present in COVID-19 patients (27,28). Little 

is known about the prevalence of myocarditis in COVID-19 patients (28). Cases of myocarditis are 

mentioned throughout the literature, but proven cases with autopsies and endomyocardial biopsy are 

rare (28). In a systematic review, Pellicori et al. (29) estimated the prevalence of cardiovascular events 

based on biomarkers and imaging to be 8.7%–72%. Hence, there is much variability between studies in 

the prevalence of cardiovascular events. All these complications together lead to high mortality rates in 

the ICU, thereby emphasising the need for the improved treatment of COVID-19.  

 

1.1.3 Mortality and risk factors 

The mortality rates of critically ill COVID-19 patients are heterogeneous between studies (30,31). 

Armstrong et al. (31) estimated the ICU mortality rates of COVID-19 patients using a systematic review. 

This review contained 24 international studies with a total of 10,150 patients. They estimated a 

worldwide ICU mortality rate of 41.64% and an ICU mortality rate of 48.44% for patients from Europe. 

Remarkedly, the ICU mortality rate did not differ significantly between continents. ICU mortality rates 

dropped to 20%–25% over time (32,33). This change in ICU mortality rates was still significant when 

correcting for patient demographics and comorbidities (33). Advances in treatment, such as applying 

dexamethasone, may explain the drop in ICU mortality rates (33,34). To date, new treatments, such as 

remdesivir (35) and tocilizumab (36), have been developed and tested in clinical trials to reduce the 

mortality rates of COVID-19 patients.  

Mortality is higher amongst older patients (4,5,17,21,37–42). Males, in general, are at risk of severe 

COVID-19 outcomes (5,37,38,40–42). In a meta-analysis involving 44,672 COVID-19 patients, males had 

an almost 1.7 times higher risk of a fatal outcome from COVID-19 (37). Moreover, patients with 

comorbidities have a higher risk of a fatal outcome (37,38,42), with hypertension being the most 

frequently mentioned (5,37,39,43). According to one study, hypertension leads to a 1.8-fold higher risk 

of severe COVID-19 and a 2.2-fold higher risk for mortality (39). Other frequently mentioned 

comorbidities with a higher risk of fatal outcome were cardiovascular disease (4,37,42), respiratory 

disease (5,37,38,42), chronic kidney disease (4,42), diabetes (4,5,37), hypercholesterolemia (5), obesity 

(42), dementia (42) and cancer (37,42).  

1.2 Post-ICU survival of COVID-19 patients 

To date, little literature is available on the long-term effects of COVID-19 infections. One of the largest 

studies with the longest follow-up was conducted by Huang et al. (44), who evaluated the health of 

1,733 COVID-19 survivors from a Chinese hospital 6 months after discharge. However, only 4% of these 

patients stayed in the ICU. They found that 76% of the survivors experienced at least one symptom. 

Fatigue or muscle weakness, sleep difficulties and anxiety or depression were the most common 

symptoms. The proportion of women having symptoms 6 months after onset was higher than that of 

men, as well as for patients who received high-flow nasal cannula, non-invasive mechanical ventilation 

and invasive mechanical ventilation. However, men were more often severely ill. Patients who received 

respiratory support and/or mechanical ventilation had an increased risk of pulmonary diffusion 
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abnormality, fatigue or muscle weakness, and anxiety or depression. From these patients, 81% had 

fatigue or muscle weakness 6 months after discharge, 56% had lung diffusion problems, 41% 

experienced pain or discomfort, 32% had anxiety or depression and 14% had mobility problems. 

Other researchers examined the health-related quality of life after ICU admission with other corona 

viruses. In a cohort from 15 years, Zhang et al. (45) found that 15 years after a severe acute respiratory 

syndrome (SARS) infection, 38% still had reduced lung diffusion capacity. The lungs of SARS ICU survivors 

made a substantial recovery in the first year after the infection, but their recovery stagnated, and 

pulmonary function after 1 year was equal to that at 15 years. Ahmed et al. (46) explored the long-term 

effects of corona viruses, such as SARS and Middle Eastern Respiratory Syndrome (MERS), after 

hospitalisation or ICU admission. They found that SARS and MERS survivors often suffered from 

impaired lung function, psychological problems and reduced exercise capacity up to 6 months after 

discharge. More specifically, they found that 27% (95% CI: 15%–45%) of SARS and MERS survivors had 

impaired diffusing capacity for carbon monoxide up to 6 months after discharge. This percentage 

remained high at 24.35% (95% CI 11.05%–45.46%) 6 months after hospital discharge. Furthermore, they 

found a high prevalence of post-traumatic stress disorder (39%, 95% CI 31%–47%), (33%, 95% CI 20%–

50%) and anxiety (30%, 95% CI 10–61%). SARS and MERS survivors had a low health-related quality of 

life on the SF-36 up to 6 months after discharge. Beyond 6 months, the health-related quality of life 

increased slightly but was still lower than that of people with a chronic illness.  

Critically ill COVID-19 patients often require mechanical ventilation (7). The valid predictors for 

post-ICU impairment for these patients are the Functional Independence Measure at 7 days post ICU 

discharge (47), length of stay in the ICU (47), patient age (47), earlier anxiety and/or depression (48), 

being divorced or separated (48) and not being discharged directly to home from acute care (48). The 

risks for long-term cognitive, physical and emotional complications increase with length of stay (49). ICU 

patients who receive mechanical ventilation often experience a reduced quality of life post discharge 

(48). The duration of mechanical ventilation influences pulmonary dysfunction and anxiety levels after 

discharge (50). Each extra day of mechanical ventilation has a significant effect on post-ICU disability 

(odds ratio 1.04 (CI 1.01, 1.08)), which ultimately leads to a reduced health-related quality of life (i.e. a 

utility score of 0.5 ± 0.26) (48). In addition, ICU survivors have a lower survival rate for at least 15 years, 

and length of stay has a significant effect on this survival rate (51). Comparable results can be expected 

from COVID-19. Researchers expect COVID-19 ICU survivors to be susceptible to post-intensive care 

syndrome (PICS) (52). Comorbidities that are highly prevalent for COVID-19 patients in the ICU are the 

most common comorbidities for people developing PICS (52). Considering the severity of the outcomes 

of COVID-19 ICU patients, studying the effectiveness of treatments is of great importance.  

 

1.3 Costs of ICU for COVID-19 patients 

COVID-19 heavily disrupted hospital funding around Europe (53). To manage the higher number of 

COVID-19 patients in Europe in ICUs, hospitals had to invest in new hospital beds, new ventilators and 

protective personal equipment (53). Many European countries provided additional funding for hospitals 

to cope with COVID-19 patients. For example, in 2020, German hospitals received €50–100 per patient 

to spend on protective personal equipment, and they also received a higher nursing fee per day to 

increase the amount of nursing care (53). In the Czech Republic, hospital fees were adjusted to 

adequately cover the costs for COVID-19 care (53).  

Length of stay has a significant effect on the medical costs of a patient (54). Reducing the length of 

stay would considerably reduce medical costs. More than 85% of the variance in total hospital costs can 

be explained by length of stay in the ICU and hospital stay (54). The first day in the ICU is the most 

expensive day and costs up to five times more than a post-ICU hospital day in a regular ward (54). 
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Subsequent days cost more than twice as much as a post-ICU hospital day (54). Each extra day a patient 

spends in the ICU leads to approximately 1.5 extra days in a non-ICU bed (55). A key factor contributing 

to the higher costs in the ICU is the presence of mechanical ventilation (53,56). This increase in costs 

attributed to mechanical ventilation is the highest for respiratory diseases (56). 

Czernichow et al. (57) estimated the average hospital costs per day for COVID-19 patients in 32 

European countries. Using the costs for four different European countries (Denmark, Spain, France and 

the UK) and a relative cost index from Eurostat, they estimated an average cost per day of €883 for a 

general hospital admission, €1.925 for an ICU admission and €3.183 for an ICU admission with 

mechanical ventilation (57). The estimated costs of a COVID-19 ICU stay per day vary greatly per country. 

For example, in Croatia, the estimated costs for an ICU stay were €397 and €657 for an ICU stay with 

mechanical ventilation, whereas in Lichtenstein, these were €5.389 and €8.911. There are not yet any 

numbers available on the costs of a COVID-19 patient post hospital discharge. 

 

2 Methods 
2.1 Digital tools to enhance the treatment of COVID-19  

One of the biggest challenges that intensivists and ICU medical staff face is the amount of data an ICU 

patient generates and the decisions that come with it. The health of a COVID-19 patient in the ICU can 

deteriorate quickly, meaning that ICU medical staff should strive to anticipate changes in health states 

and act promptly. In addition, considering the novelty of COVID-19, a consensus on treatment regimens 

is lacking in some cases (58,59). Digital tools exploiting AI may aid ICU medical staff in making these 

decisions. AI tools can process and analyse enormous amounts of data in real time and provide ICU 

medical staff with predictions on health states or treatment recommendations.  

Several researchers have presented AI tools for ICUs. Ryan et al. (60) used machine learning to 

successfully predict ICU mortality in COVID-19 patients. They showed that mortality can be predicted 

72 hours in advance using vital signs and laboratory data. Rehm et al. (20) developed an AI system that 

was able to detect the presence of ARDS and the occurrence of patient ventilator asynchrony. Other 

researchers have studied the prediction of sepsis for ICU patients. For example, Ibrahim et al. (61) 

compared various machine learning algorithms to predict sepsis. They used several subpopulations of 

septic patients with distinct organ dysfunction patterns. Using these distinctions, they were able to 

predict sepsis with an area under the curve (AUC) of 0.96. Several other researchers have used machine 

learning algorithms to detect sepsis 12–24 hours before onset (62,63). The detection of sepsis using AI 

seems to be more effective than other existing sepsis screening tools, such as Sequential Organ Failure 

Assessment score and systemic inflammatory response syndrome score (19). To date, little research is 

done on treatment recommendation using AI for COVID-19 patients in ICUs. 

 

2.2 The AI-based systems of ENVISION 

The goal of ENVISION is to develop and implement a digital tool called the Sandman ICU, which uses AI 

to improve the treatment options for COVID-19 patients in ICUs. The Sandman ICU will use real-time 

monitoring of various vital parameters and will support the decision making of medical staff. Each 

hospital bed in the ICU will have an iPad which will be connected to devices, such as a respiratory unit 

or a monitor. The Sandman ICU app will automatically process the data from the connected devices. 

Medical staff can also input additional information, such as medical history, laboratory values and 

applied medication. The data will be automatically processed with AI in a server. Medical staff can 

request that the Sandman ICU provide recommendations on medications, such as anticoagulants, or on 

treatment regimens, such as positioning.  
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The AI experts involved in the ENVISION project developed 10 different use cases demonstrating 

the different possibilities of integrating AI into healthcare settings. These use cases can be found in 

Deliverable D.3.2. The Health Technology Assessment Plan will be based on these use cases. We divided 

the use cases into three distinct categories:  

1. An AI-based system that provides recommendations on treatment based on earlier 

observations and/or the current clinical guidelines 

2. An AI-based system that predicts sepsis  

3. An AI-based system that recommends the inclusion of a specific patient in a clinical trial 

A general overview of all the use cases and the proposed categories can be found in Figure 1. In Section 

2.2.1–2.2.3, we will elaborate on the three different categories of use cases. For each of these categories 

of use cases, an HTA strategy was developed (see Sections 2.4–2.6).  
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Figure 1. Overview of the use cases and the categories. For more info on each use case, refer to: 

Deliverable D.3.2 COVID-19 use cases and ICU scenarios. 

 

2.2.1 Category 1: An AI-based system that provides treatment recommendations  

The first category of use cases for the Sandman ICU consists of AI-based systems that provide treatment 

recommendations based on earlier observations and/or the current clinical guidelines. As an example, 

we will show how the Sandman ICU can provide recommendations on the use of dexamethasone. The 

Sandman ICU can inform the medical staff that a patient can benefit from dexamethasone treatment. 

This recommendation will be based on clinical guidelines available online, similar cases in Europe and 

the patient’s record for certain pre-existing conditions. In addition, the Sandman ICU can calculate the 

best dose for the patient and the optimal treatment duration. Figure 2 shows how the Sandman ICU 

decides on the best treatment regime for dexamethasone. Note that for illustration purposes, we chose 

dexamethasone to represent this category of use cases, but a similar system can provide 

recommendations on anticoagulant treatment, positioning, timing of intubation and more. For an 

overview of all the use cases included in this category, please refer to Figure 1.  
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Figure 2. Flowchart of the recommendations of the Sandman ICU for dexamethasone. Other use cases in 

category 1 work according to a similar mechanism. Figure from Deliverable D.3.2 COVID-19 use cases 

and ICU scenarios. 

 

2.2.2 Category 2: An AI-based system that predicts sepsis 

The second category of use cases is the prediction of sepsis. Sepsis is a severe complication with a high 

mortality rate that often remains undetected. It is one of the most frequent complications in 

hospitalised COVID-19 patients. For a more extensive overview of sepsis in COVID-19 patients, please 

refer to Section 1.1.2. The Sandman ICU will be able to provide the doctor with a warning that a patient 

is possibly experiencing a sepsis infection.  

Suppose the situation of a patient in the ICU is deteriorating. The patient’s heart rate and breathing 

frequency have slowly increased over time, and they have a low blood pressure and a low body 

temperature. As these changes happened gradually over time, the ICU doctor did not suspect a 

superinfection on time. However, based on the respiratory status, vital status, laboratory parameters 

and medical history of the patient, the Sandman ICU provides the doctor with a warning that this patient 

possibly has a secondary infection. Basing on this, the doctor decides to order a microbiological test, 

and shortly after, the test comes back positive. Figure 3 illustrates the flowchart that the Sandman ICU 

uses to predict sepsis.  

In the HTA, we will evaluate the effect of two types of predictions: predictions of sepsis at onset 

and predictions of sepsis before onset. The effect of predictions of sepsis at onset will be measured by 

comparing the predictions with the state of the art of sepsis detection, whereas the effect of predictions 

of sepsis before onset will be estimated using health economic modelling.  
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Figure 3. Flowchart of the predictions of the Sandman ICU for sepsis. Figure from Deliverable D.3.2 

COVID-19 use cases and ICU scenarios. 

 

2.2.3 Category 3: An AI-based system recommending clinical trials  

The third category of use cases is an AI-based system that recommends the inclusion of a specific patient 

in a clinical trial. We will illustrate this with an example. Suppose a patient in the ICU had intensive 

medical treatment, but their situation is still deteriorating. The ICU doctor is considering including this 

patient in a clinical trial. However, there are multiple studies, and it will be time consuming for the ICU 

doctor to find a suitable study for this patient. The ICU doctor can consult the Sandman ICU, and basing 

on the respiratory status, vital status, laboratory parameters and medical history of this patient, the 

Sandman ICU will provide the ICU doctor with a suitable clinical trial for this specific patient. Figure 4 

illustrates the flowchart for this use case.  

 

Figure 4. Flowchart of the recommendations for a specific patient to be included in a clinical trial. Figure 

from Deliverable D.3.2 COVID-19 use cases and ICU scenarios. 
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2.3 Defining the outcome variables 

To express the effectiveness of the different use cases, we will use various outcome variables. One is 

survival. Considering the substantial number of patients with COVID-19 in ICUs worldwide, many lives 

can be saved by increasing the survival rate in ICUs. Related to this is the number of life years saved, 

which can be derived from a patient’s life expectancy. Another outcome is the decrease in the length of 

stay or duration of mechanical ventilation of COVID-19 patients in ICUs. This would be beneficial for the 

current pressure on healthcare systems globally. Additionally, decreasing the length of stay has a direct 

impact on the patient’s quality of life post discharge, which is the fourth outcome variable that we will 

consider. The first three outcome variables can be directly derived from the data for the no-treatment 

group. The treatment effect needs to be estimated using the economic models defined in the following 

sections. To estimate the quality-adjusted life years (QALYs) gained by the effects of the AI system, we 

aim to utilise the effect of reductions in the length of mechanical ventilation mentioned earlier (48). 

The fifth outcome variable that will be considered is the costs of the ICU stay. To ensure exact 

information on these costs, we will ask all clinical partners to answer a few questions about the costs of 

treating a COVID-19 patient in the ICU per day. We will also use the costs of the development and 

implementation of the Sandman ICU. 

In the next sections, we will introduce strategies on estimating these outcome variables for each 

category of use case. Furthermore, we will demonstrate how these outcome variables are used to 

perform the HTA.  

 

2.4 Category 1: HTA for an AI-based system that provides treatment 

recommendations  

Below, we illustrate two different methods on how we could assess the effectiveness of the first 

category of use cases. As an example, we will illustrate this with recommendations on anticoagulants. 

However, a similar approach can be taken for the other use cases that recommend a treatment based 

on the guidelines and/or data (category 1). Both methods start with creating a dummy variable that 

indicates if a patient was treated according to the recommendations of the AI system. 

Suppose a patient with COVID-19 stays in the ICU for three days and starts to show signs of 

thrombosis. Further research reveals acute limb ischemia. The next step would be to administer a type 

of anticoagulant. Based on the patient’s records, as well as the data of the Sandman data hub, a type of 

anticoagulant and a dose will be recommended by the AI system.  

The goal of the HTA is to investigate the effectiveness of these recommendations. To do this, we 

will use the collected data, for which no recommendations were made by the AI system. To investigate 

the possible effectiveness of the AI system, we apply the system to the collected data and classify for 

each patient whether the recommended anticoagulant was given, as well as the recommended dose. 

The dose can be epsilon apart from the recommended dose, i.e.  

|𝐷𝑜𝑠𝑒𝑔𝑖𝑣𝑒𝑛 − 𝐷𝑜𝑠𝑒𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑| < 𝜖, 

where 𝐷𝑜𝑠𝑒𝑔𝑖𝑣𝑒𝑛 is the actual applied dose of the anticoagulant, 𝐷𝑜𝑠𝑒𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 is the 

recommended dose by the AI system and 𝜖 is the threshold of the deviation between the recommended 

dose and the actual dose. The epsilon values will be obtained using expert elicitation. Expert elicitation 

is an established technique in HTA, particularly in situations where empirical evidence is limited (64). A 

dummy variable will show if the applied anticoagulant and the dose were consistent with the 

recommendations (group 1) or not (group 0). Patients receiving an anticoagulant that differed from the 

recommended anticoagulant and/or received another dose would probably have a different outcome 

when the AI system provides recommendations.  
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To investigate the effectiveness of the AI system, we assume that whenever the system provides 

the doctor with recommendations, the outcomes of patients in group 0 are equivalent to those of the 

patients in group 1 with similar demographical characteristics and comorbidities. We match the patients 

in group 0 with several patients from group 1 with similar demographical characteristics and 

comorbidities using a combination of exact matching and propensity scores. Then, we calculate the 

mean length of stay and the proportion of deaths of the matched patients. We will assume that this will 

be the length of stay and the proportion of deaths for the patients in group 0 in the case that the AI 

system would have been available.  

The health gains and cost savings of using the AI system can then be estimated by subtracting the 

original length of stay from the new length of stay using the AI system. The same can be done for ICU 

survival.  

Another possibility is to simulate the effect of the AI model using a predictive machine learning 

model. Two different assumptions should hold for this to be a feasible approach. First, the amount of 

data in the treatment group (1) should be sufficient. Second, the multidimensional distribution in the 

no-treatment group (0) and in the treatment group (1) needs to be similar. In case the multidimensional 

distributions are similar, we will filter for all the patients in group 1 and split this dataset into a training 

set and a test set. Then, using cross validation, we will train several machine learning models, i.e. 

(logistic) regression, support vector machine, random forest and XGBoost, on the training set to predict 

either survival or length of stay. The model with the best average performance on the validation set will 

be selected. This model will be tested on the test set, and the performance of the model will be 

measured using either AUC or mean squared error depending on the outcome variable. In case the 

model performs well, it discovers the (nonlinear) relationships between the outcome variables and 

several patient characteristics when following the recommendations of the AI system. Then, to simulate 

what would have happened if the ICU doctors of the patients in group 0 had followed the 

recommendations of the AI system, we will allow the model to predict the outcomes of the patients in 

group 0. The model will provide predictions for each patient, and these will be based on the underlying 

mechanisms of the (nonlinear) relationships between the outcome variables and several patient 

characteristics when following the recommendations. Then, to estimate the effect of the AI system, we 

can look at the differences between the predictions of the model and the real outcomes in terms of 

survival, ICU stay and costs.  

 

2.4.1 Estimating health gains post ICU 

Based on the estimated increased survival, the number of life years gained can be estimated using life 

expectancy tables. The reductions in the length of stay or duration of mechanical ventilation can be 

used to estimate the health-related quality of life post ICU. Both length of stay and length of mechanical 

ventilation have a significant effect on this (47,48). Currently, there is no research relating length of stay 

or length of mechanical ventilation with COVID-19 patients’ health-related quality of life post ICU. 

Therefore, to estimate the long-term health gains, we assume for now that the effect is similar amongst 

all ICU patients. Earlier research has shown that each extra day of mechanical ventilation increases the 

risk of being moderately to severely disabled post discharge by 1.04 (48). Multiplying the reduction in 

the length of mechanical ventilation with 1.04 results in a decrease in the odds of being moderately to 

severely disabled post discharge. Hence, fewer patients will be moderately to severely disabled after 

ICU discharge. Research has shown that 6 months after discharge, patients with no to mild disability 

have a utility score of 0.77, whereas moderately to severely disabled patients have a utility score of 0.5 

(48). To obtain the QALYs gained with the recommendations of the Sandman ICU, we can multiply the 
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differences between these utility scores (0.77–0.50 = 0.27) with the number of life years gained and the 

reduced proportion of moderately to severely disabled patients discharged from the ICU, i.e.  

𝑄𝐴𝐿𝑌𝑠 𝑔𝑎𝑖𝑛𝑒𝑑 = 0.27 ∗ 𝑛 ∗ 𝑝𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑑, 

where n is the number of life years gained, and pdisabled is the reduction in the proportion of moderately 

to severely disabled patients discharged from the ICU. 

 

2.4.2 Relating the costs to the treatment benefits 

With the above methods, reductions in the length of stay using the AI system can be inferred. This can 

be translated into reductions in the costs of ICU treatment and possibly to reductions in the costs of 

post ICU care. To evaluate the cost effectiveness of the AI system, we calculate the incremental cost-

effectiveness ratio (ICER). Using the ICER, we will compare the costs with the benefits of the AI system. 

Hence, we can look at the increased survival rate, number of saved life years and the QALYs gained 

compared to the costs.  

 

2.5 Category 2: HTA for an AI-based system that predicts sepsis 

2.5.1 Predictions of sepsis at onset 

To estimate the benefits of Sandman ICU warnings for a possible superinfection, we need to estimate 

the increase in detected sepsis cases. For this, a similar approach will be taken as in the paper of Calvert 

et al. (19). To estimate the increase in true positives, we will compare the sensitivity of the Sandman 

ICU with that of the risk stratification scores and/or triage systems currently used in ICUs throughout 

Europe, whilst keeping the specificity constant. This will be done in several discrete time moments, i.e. 

at onset, one hour after onset, four hours after onset and eight hours after onset. At each of these 

moments, we will calculate the sensitivity for equal specificity of the Sandman ICU, as well as of the 

other frequently used risk stratification scores and/or triage systems. If the Sandman ICU detects sepsis 

at onset for a certain patient, whereas the risk stratification scores and/or triage systems detect this 

infection four hours later, this patient has the benefit of receiving the treatment 4 hours earlier. Ferrer 

et al. (65) estimated the effect of delayed adequate treatment in patients with sepsis in the ICU using 

generalised estimation equations. They found a linear increase of approximately 1.42% in the risk of 

mortality every hour the treatment was late. Using the data collected by the Sandman ICU, we can 

estimate the effect of delayed adequate treatment for COVID-19 patients in ICUs in a similar fashion. 

These effects on mortality can then be used to estimate the differences in mortality of using the 

Sandman ICU compared with the risk stratification scores and/or triage systems currently used in ICUs 

around Europe. Finally, to estimate the reductions in the length of stay with timely adequate treatment, 

we will use generalised estimation equations. The possible increase in true positives using the Sandman 

ICU can then be used to estimate the total decrease in length of stay. 

 

 

2.5.2 Predictions before the onset of sepsis  

The early identification and treatment of sepsis are important factors that increase the odds of survival 

(65). In an ideal scenario, an ICU doctor would detect that a patient is developing sepsis before the onset 

of the sepsis. AI may pick up on nonlinear relationships between variables that are predictive of sepsis 

but are impossible to observe for humans. This gives rise to the opportunity to detect sepsis hours 

before onset. The possible benefits of knowing that a patient will develop sepsis are difficult to estimate 

because in general, this knowledge is not present. Therefore, to estimate the effects of knowing that 

someone will develop sepsis within a certain time frame, we will use expert elicitation (64). Experts will 
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be asked to reply to a few questions about administering medication before the onset of sepsis. The 

following is an example: What are the adverse effects, in terms of length of stay and fatal outcomes, of 

sepsis treatments for false positives, that is, when the AI system predicts that a patient is going to 

develop sepsis, but they do not? Conversely, what are the beneficial effects for true positives?  

Then, to estimate the effects of predictions of sepsis, we will take an approach similar to that taken 

in Section 2.4. To ensure that our estimations are not biased by overfit, we will use the test set used by 

the AI experts of ENVISION to evaluate the AI system. Then, we will label all patients who developed 

sepsis during their stay as 1 and all the other patients as 0. We will apply the AI system to the test set 

and identify the true positives, i.e. all patients who were predicted to develop sepsis and indeed 

developed it. These patients could have benefitted substantially from early adequate treatment. To 

estimate the health gains these patients could have received, we assume that adequate treatment 

before the onset of sepsis leads to the prevention of sepsis. Therefore, we can assume that the 

outcomes of these patients would have been similar to those of the patients who did not develop sepsis. 

We will match each true positive in group 1 using propensity scores with the patients in group 0 with 

similar demographic characteristics and comorbidities. Then, we can assume that the outcome of these 

patients in group 1 would have been similar to the mean outcome of the matched patients in group 0. 

In the case that there are sufficient data and the multidimensional distributions between the 

patients who developed sepsis and those who did not are relatively similar, we could train a machine 

learning model on the test data of the patients who did not develop sepsis. This model will then predict 

survival and length of stay and will be based on the dynamics of patients who did not develop sepsis. 

Then, to simulate the effect of early adequate treatment, we will use this model to predict the outcomes 

of the true positives. This will simulate the effect of the prevention of sepsis. The differences between 

the predicted outcomes and the true outcomes are the possible health gains of the model. 

However, treatment for sepsis might also have some adverse effects in cases in which it is 

unnecessary. To estimate these effects, we need to identify the false positives, that is, those patients 

who were predicted to develop sepsis but did not actually do so within a certain time frame. Combining 

the number of false positives with the adverse effects of receiving an unnecessary treatment for sepsis 

(obtained from expert elicitation) derives the adverse effects of the AI system. Then, to estimate the 

health gains of the AI system, we will combine the health gains of early adequate treatment for the true 

positives with the possible adverse effects of receiving unnecessary treatment for sepsis.  

 

2.5.3 Estimating health gains post ICU  

To estimate the health gains post ICU of an AI-based system that predicts sepsis, we will use a similar 

approach as that taken in Section 2.4.1.  

 

2.5.4 Relating the costs to the treatment benefits 

Treatment benefits will be related to the cost using the ICER. The ICER for the prediction of sepsis for 

COVID-19 patients in ICUs can be calculated in a similar fashion as in Section 2.4.2. 

 

2.6 Category 3: HTA for an AI-based system recommending clinical trials  

Hospitals spend much time selecting the right patients for trials. A possible use case of the Sandman 

ICU would be to automatically assign patients to trials. The use of this application can help save much 

time—time which can be spent more efficiently. The time saved using this system can be estimated and 

translated into saved costs. Trials are important for the development of new treatments. Filling trials 

with more patients reduces the uncertainty in the estimation of treatment effects, which can be 
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translated into the value of information (66). Moreover, when trials are filled up earlier, the analysis of 

effectiveness can be done in an earlier stage, meaning that successful treatments can be applied earlier 

in practice. As an example, we can take the trial for dexamethasone (34). In this trial, researchers found 

that the proportion of patients with a fatal outcome was significantly reduced in the treatment group 

(i.e. 29.3% vs. 41.4%) (34). This means that starting this treatment earlier may have saved many patients. 

However, the effects of different treatments vary between trials. Estimating the benefits of filling up 

trials earlier is therefore very challenging, and the cost-effectiveness of this use case may be difficult to 

demonstrate, although saving time is something that will always be worthwhile in usually understaffed 

ICU departments.  

 

3 Overview of the proposed strategies  
Figure 5 shows an overview of the proposed strategies to estimate the health gains and saved costs per 

category of use case. The effectiveness of the first two categories of use cases will be expressed using 

the estimate of increased survival, reductions in the length of stay and mechanical ventilation, life years 

gained and QALYs. For both use cases, the costs will be analysed, and the cost effectiveness will be 

evaluated with an ICER. A use case will be considered cost-effective in a specific country whenever the 

cost per QALY is lower than the cost effectiveness threshold. For the third category of use cases, we will 

consider the time savings for staff, the value of information and the benefits of filling samples of trials 

faster.  
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Figure 5. Overview of the proposed strategies to estimate health gains and (saved) costs per type of use case. 
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4 Implementation 
A timeline for the implementation of the HTA is represented in Figure 6 below. Note that this plan is 

highly dependent on the data collection, as well as on the implementation of the AI done by the AI 

experts. This timeline is therefore subject to changes.  

 

Figure 6. Timeline for the implementation of the HTA. 

5 Additional information  
The methods presented in this assessment plan are based on the use cases developed by the AI experts 

and clinicians in ENVISION. These use cases were developed before the data collection of the Sandman 

ICU started. Depending on the form of the data, not all use cases may be developed, use cases may be 

adjusted or new use cases may come about. These factors have an impact on the HTA. Similarly, the 

(amount of) data may not be suitable for the proposed HTAs. New information about COVID-19 in the 

form of literature is also published daily. This information may influence the logic or feasibility of the 

plans proposed here. Therefore, the final HTA may differ from the methods described in this assessment 

plan.  
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